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Abstract

AlphaFold2 has revolutionized protein structure prediction by leveraging

sequence information to rapidly model protein folds with atomic-level accu-

racy. Nevertheless, previous work has shown that these predictions tend to be

inaccurate for structurally heterogeneous proteins. To systematically assess fac-

tors that contribute to this inaccuracy, we tested AlphaFold2's performance on

98-fold-switching proteins, which assume at least two distinct-yet-stable sec-

ondary and tertiary structures. Topological similarities were quantified

between five predicted and two experimentally determined structures of each

fold-switching protein. Overall, 94% of AlphaFold2 predictions captured one

experimentally determined conformation but not the other. Despite these

biased results, AlphaFold2's estimated confidences were moderate-to-high for

74% of fold-switching residues, a result that contrasts with overall low confi-

dences for intrinsically disordered proteins, which are also structurally hetero-

geneous. To investigate factors contributing to this disparity, we quantified

sequence variation within the multiple sequence alignments used to generate

AlphaFold2's predictions of fold-switching and intrinsically disordered pro-

teins. Unlike intrinsically disordered regions, whose sequence alignments

show low conservation, fold-switching regions had conservation rates statisti-

cally similar to canonical single-fold proteins. Furthermore, intrinsically disor-

dered regions had systematically lower prediction confidences than either fold-

switching or single-fold proteins, regardless of sequence conservation.

AlphaFold2's high prediction confidences for fold switchers indicate that it

uses sophisticated pattern recognition to search for one most probable con-

former rather than protein biophysics to model a protein's structural ensemble.

Thus, it is not surprising that its predictions often fail for proteins whose prop-

erties are not fully apparent from solved protein structures. Our results empha-

size the need to look at protein structure as an ensemble and suggest that

systematic examination of fold-switching sequences may reveal propensities

for multiple stable secondary and tertiary structures.
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1 | INTRODUCTION

AlphaFold2 has revolutionized protein structure predic-
tion by using sequence information to rapidly model pro-
tein folds with atomic-level accuracy.1,2 Its predictions
are generated by a deep neural network that identifies
features of both multiple sequence alignments (MSAs)
and experimentally determined protein structures. In
other words, AlphaFold2 predictions are generated by a
highly sophisticated deep-learning model that excels at
recognizing correlations between protein sequence and
structure.

AlphaFold2's approach to protein structure prediction
is rooted in a large training set of experimentally deter-
mined protein structures. Indeed, without the Protein
Data Bank (PDB), a publicly available repository of
nearly 200,000 protein structures,3 it would be impossible
to predict protein structure through deep learning.4 Con-
sequently, deep learning-based approaches are likely to
miss protein properties that are not apparent from experi-
mentally determined structures. For example, the confor-
mations accessible to structurally heterogeneous
proteins, whose overall secondary and tertiary structures
are either unstable or change in response to their envi-
ronment, cannot be captured in a single protein struc-
ture. Thus, it is not surprising that AlphaFold2 often fails
to accurately predict the conformations of intrinsically
disordered proteins,5–7 whose structures are highly het-
erogeneous. Specifically, AlphaFold2 predictions cover
99% of sequences in the human proteome (https://
alphafold.ebi.ac.uk/), but only 58% of residues are mod-
elled with high confidence.5,7 Many low-confidence pre-
dictions correspond to intrinsically disordered proteins/
regions (IDPs/IDRs), often predicted to fold into long fila-
ments.5,6 Furthermore, it remains unknown how accu-
rately high-confidence predictions capture the structures
of uncharacterized proteins, especially those few homo-
logs in sequence databases or with sequences dissimilar
to proteins represented in the PDB.

Here, we systematically assess whether AlphaFold2
captures the structural heterogeneity of fold-switching
proteins. Contrasting IDPs/IDRs, which are natively
unstructured, fold-switching proteins have regions that
either assume distinct stable secondary and tertiary struc-
tures under different cellular conditions or populate two
stable folds at equilibrium.8–10 Thus, the sequences of
fold-switching protein regions encode more than one
ordered state.9,11 As AlphaFold2 maps primary structure
(amino acid sequence) to three-dimensional structure, we
compared its predictions with experimentally determined
protein structures to explore whether it identifies the two
stable structures encoded by fold-switching sequences, a
single structure, or something else.

2 | METHODS

2.1 | Dataset of fold-switching proteins

A set of 98 proteins9,12 that assumed at least two distinct-
yet-stable secondary/tertiary structures (folds) was used
for the analysis (Table S1a). This unique dataset contains
protein pairs with extremely high levels of sequence iden-
tity (mean 99%/median 100%, Table S1b) but regions of
25 residues or more with different secondary structure
configurations, quantified previously9 by comparing
aligned secondary structure annotations assigned by
hydrogen bonding13 and backbone torsion angles.14 Out
of the 98, 93 had the alternate fold solved in PDB
(Tables S1b,c); 91/93 of these proteins have 90% aligned
identity or higher; the other two are homologs with
experimental evidence of fold switching. Similarly, the
remaining 5 of 98 were homologs of fold switchers with
only one solved structure in the PDB. These proteins are
expected to switch folds because their closely-related
homologs do (such as KaiBs from other strains cyano-
bacteria with circadian clocks: 4ksoA, 1wwjA, 1r5pA), or
were shown to switch folds by methods other than crys-
tallography, Nuclear Magnetic Resonance or cryogenic
electron microscopy, such as Circular Dichroism
(e.g. 1f16A).12 The sequences of these five proteins were
used mainly for generating predictions, followed by ana-
lyzing prediction scores after modeling (Assessment of
model quality) and also for conservation scores from the
MSA generated during prediction (Conservation scores
and rate of evolution using MSA), but were not used for
structural comparisons using Template Model (TM)-
scores and Root Mean Square Deviations (RMSD)
(Assessment of model quality). The structural comparisons
between the pairs themselves along with their sequence
identities can be seen in Table S1b. Mean/median TM-
scores of fold-switching pairs are 0.58/0.63 and RMSDs
are 12.6/9.2 Å, demonstrating that the experimentally
determined structures differ significantly.

2.2 | Dataset of IDP/IDR

A set of 99 proteins was randomly selected from DisProt
(https://disprot.org/), a database of experimentally char-
acterized intrinsically disordered proteins, with disor-
dered regions manually curated from the literature.15 The
proteins chosen for the analysis (Table S2) had disordered
regions ranging from 20 to 100 residues (to keep their
average sizes similar to fold-switching regions); these
regions were not located at termini. The set also included
the three disordered proteins used in the previous work
analyzing Alphafold26: histone acetyltransferase p300
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(Uniprot: Q09472, DisProt: DP00633), CREB-binding pro-
tein (Uniprot: Q92793, DisProt: DP02004) and the RNA-
binding protein FUS (Uniprot: P35637, DisProt:
DP01102). The disordered region in P300 and CREB are
6.88% and 3.85%, in contrast with the third protein FUS
that is 96.39% disordered. These three proteins were
included since they had been used in previous work, but
the rest of the disordered proteins had similar average
size keeping them on par with average size of fold-
switching regions. While the full protein sequences were
used to generate AlphaFold2 models, only the disordered
regions were analyzed.

2.3 | AlphaFold2 model generation

The FASTA sequences of fold-switching proteins were
extracted from PDB SEQRES records and used as input
to the AlphaFold2 structure prediction model,1 an open-
source implementation of the inference pipeline of
AlphaFold v2.0 (https://github.com/deepmind/alphafold)
maintained on the NIH HPS Biowulf cluster (http://hpc.
nih.gov). Ideally, the sequences for the PDB pairs
(corresponding to the two folds) would be identical, but
for 56 of the pairs the sequences were not identical, usu-
ally due to insertions or deletions. Hence we performed
modeling for 154 proteins (Table S3). The template data-
base contained PDB structures and sequences released
until July 31, 2021, which contains both experimentally
determined structures from all 93 pairs of fold-switching
proteins. The 99 proteins from the DisProt database were
modeled with the same parameters as the fold-switching
proteins (Table S2).

Three additional AlphaFold2 runs were performed to
assess the effects of templates and MSA depth: one
excluding all templates using full MSAs, one excluding
all templates using shallow MSAs (Neff = 32), and one
including all templates using shallow MSAs (Neff = 32).
We chose a depth of 32 because AlphaFold2's accuracy
was reported to decrease substantially below a depth of
approximately 30.1 Thus, we reasoned that MSAs with a
depth of 32 would maximize both heterogeneity and
accuracy. As in previous work,16 MSA depth was modi-
fied by setting the AlphaFold2 config.py parameters
max_extra_msa and max_msa_clusters to 32 and
16, respectively.

2.4 | Assessment of model quality

AlphaFold's top-scoring models are ranked from 1 to 5 by
per-residue Local Distance Difference Test (pLDDT)
scores (a per-residue estimate of the prediction

confidence on a scale from 0 to 100), quantified by deter-
mining the fraction of predicted Cα distances that lie
within their expected intervals. The values correspond to
the model's predicted scores based on the lDDT-Cα met-
ric, a local superposition-free score to assess the atomic
displacements of the residues in the model.1 Models
ranked in the top five were compared to the original PDB
structure using structural alignment as implemented in
TM-align,17 an algorithm for sequence-independent pro-
tein structure comparison. TM-align first generates an
optimized residue-to-residue alignment based on second-
ary structure connections or topology using dynamic pro-
gramming iterations. An optimal superposition of the
two structures is then built on the resulting alignment
and TM-score (ranging from 0 to 1) is reported as the
measure of overall accuracy of prediction for the models.
TM-score >0.5 implies roughly the same fold,18 and a
higher value indicates a better match. As an alternative
measure of structural similarity, we aligned sequences,
used the alignment to determined least-square superposi-
tion of backbone atoms (C, Cα, O, and N), and calculated
their RMSD using ProFit (Martin, A. C. R, http://www.
bioinf.org.uk/software/profit/). These standards of struc-
tural similarity were also used by authors of AlphaFold2
to assess the quality of their predictions.1

2.5 | Ordering conformations

Conformations with higher TM-scores for at least three
out of five AlphaFold2 predictions were designated
“Fold1.” Two exceptional cases, 6z4u/5tpn, were desig-
nated “Fold1” because they had good/moderate TM-
scores (>0.9/0.66) for two out of five AlphaFold2 predic-
tions, whereas the remaining three predictions had mod-
erate/poor TM-scores (< 0.75/0.22) for both folds.

2.6 | Clustering in Figure 1

Figure 1 is clustered with k-means clustering, as
implemented in the python module scikit-learn.19 The
number of clusters was determined by searching for the first
local minimum of second derivative (i.e., curvature) with
respect to k-means inertia (Figure S1). Predictions in Clus-
ter 1 with either TM-score <0.8 were assigned to Cluster 2;
likewise predictions in Cluster 1 with either RMSD <5 Å
were also assigned to Cluster 2 (Figure S2a). TM-scores of
fold-switching regions of proteins from Cluster 1 were
determined by excising fold-switching regions from both
experimentally determined structures and the five
AlphaFold models and comparing them with TMalign.
Orders of Fold1 and Fold2 were identical as in Table S1c
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except for 5B3Z_A/5BMY_A, all of whose predictions were
biased toward Fold2, and thus their ordering was switched.
This result is not surprising given that the fold-switching
region of this pair was small compared with the whole pro-
tein (29 out of 403 residues). Predictions for Fold2 were con-
sidered significantly larger if their TM-scores exceeded the
TM-scores of Fold1 by at least 0.05, ruling out cases where
predictions were equally good for both folds but the TM-
score was marginally better for Fold2.

2.7 | Fold-switching/single-folding
regions

As reported previously,20 we divided the alignments into
fold-switching and single-folding regions, since fold-
switching proteins are typically composed of both.9

Sequences of fold-switching regions along with their
lengths are reported in Table S1a.

2.8 | Conservation scores and rate of
evolution using MSA

The MSAs generated by AlphaFold2 to predict residue-
residue distances and orientations were used to determine
evolution rates, using Rate4Site (https://www.tau.ac.il/
�itaymay/cp/rate4site.html).21 The program requires an
MSA file to compute a phylogenetic tree and then calcu-
lates the relative conservation score for each column in
the MSA. An empirical Bayesian method, which signifi-
cantly improved the accuracy of conservation score esti-
mates over the Maximum Likelihood method, was used to
generate the rates.21 The scores are represented as grades
ranging from conserved-9 to variable-1.

2.9 | Statistical tests

The distributions of pLDDT scores and Rate4Site grades in
fold-switching regions were compared to the rest of the pro-
tein (the single-folding regions) and with a set of 99 IDP/
IDRs (Table S2). Significance of differences in pLDDT distri-
butions was calculated by employing the two-sample
Kolmogorov–Smirnov and Epps-Singleton tests
implemented in SciPy.22 As Rate4Site scores yield a discrete
distribution, only the Epps-Singleton test was used.

2.10 | Checking templates

To assess whether AlphaFold2 used templates rep-
resenting both fold-switch conformations (targets) to

make its predictions, PDB IDs of templates were obtained
from the features.pkl files after from each run and ranked
according to “sum probs” as in Reference 1. The four top-
ranked PDB IDs from each run with structures similar
(TM-scores >0.5) or identical (TM-scores >0.9) to one of
the two targets were considered. Three steps were taken
to assess whether a template was similar or identical to a
given target. First, PDB IDs were compared. Templates
and targets with identical PDB IDs and chains were asso-
ciated. Templates and targets with identical PDB IDs but
different chains (e.g., 2vfxE/2vfxL as template/target)
where associated when their sequences were identical
and their TM-scores exceeded 0.9. Second, for templates
and targets with different PDB IDs, the header file of the
template was checked to verify that it reported the struc-
ture of the same protein as the target (e.g., 5jyt [target]
and 5jwo [template] both report structures of KaiB).
Finally, TM-scores were used to assess if the templates
are more similar to one fold versus the other. The fold-
switching PDB ID pairs along with corresponding tem-
plates and the TM-scores are reported in Table S6.

2.11 | Scripts and figures

The scripts used for all analyses were written in Perl and
Python; protein figures were generated in PyMOL23 and
plots in Matplotlib24 and seaborn.25

3 | RESULTS

3.1 | AlphaFold2 predictions are biased
toward one conformation/fold

The five top-scoring AlphaFold2 models of each fold-
switching sequence were compared with two distinct,
experimentally determined conformations using T-
Malign, which quantifies similarity of topology and con-
nections between secondary structure elements by TM-
score.17 This metric was used by the authors of
AlphaFold2 to assess the accuracies of their models.1 We
organized both experimentally determined conformations
by systematically terming the mostly accurately predicted
conformation (if three or more models out of five were
predicted better as seen in 91 pairs, two out of five as for
the two exceptions, Ordering conformations in Section 2)
as “Fold1” and the alternate conformation “Fold2”
(Section 2). To augment TM-scores we performed RMSD
comparisons as well (Figure S2).

AlphaFold2 models were highly biased toward only
one conformation. A scatterplot of prediction accuracies,
measured by TM-scores (Figure 1a), indicates that nearly
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94% of predictions fall below the identity line and are
thus more similar to Fold1 than Fold2. The k-means
algorithm was used to subdivide the scatterplot into three
clusters, corresponding to the first local minimum of k-
means inertia curvature with respect to the number of
clusters (Figure 1a and Figure S1, Section 2). To simplify
discussion, clusters were ordered by prediction quality
rather than size. Cluster 1 comprised approximately 33%
of all predictions, which were the most accurate for both
conformations (TM-scores ≥0.8). Cluster 2 comprised
approximately 52% of all predictions and generally paired
either one good prediction (TM-score ≥0.8) and one mod-
erate prediction (0.6≤ TM-score <0.8) or two moderate

predictions. Cluster 3 comprised the remaining 15.5% of
predictions, all of which had at least one poor prediction
(TM-score <0.6).

Structural predictions tended to be conformationally
homogeneous. Specifically, all five models were most simi-
lar to Fold1 in over 80% (75 out of 93) of fold-switching
sequences (Figure 1b). Additionally, TM-scores of Fold1
and Fold2 were very close (average difference in TM-
scores 0.022 ± 0.017) in 14 of the remaining 18 cases,
again indicating high levels of structural similarity among
AlphaFold2-predicted models. The remaining four cases
sample both conformations with moderate-to-good accu-
racy, and representatives are shown in Figure S3.

FIGURE 1 AlphaFold2 fails

to predict fold switching. 94% of

AlphaFold2 predictions fall

below the identity line (dashed

line, (a), indicating bias toward

one fold. All five models for

each test case are shown.

Predictions were clustered by

the quality of their

correspondence with experiment

(good predictions with TM ≥0.8
for both conformations were

colored teal; moderate, purple;

poor, green). Furthermore, all

five of AlphaFold2's best models

corresponded to Fold1 for 81%

of fold-switching sequences.

Lines labeled with Roman

numerals identify the points on

the graph whose experimentally

determined structures are

depicted in (b). Experimentally

determined structures

representing all three clusters

are shown in (c) and compared

with the top five AlphaFold2

predictions for their sequences.

Experimentally determined fold

switching regions are colored

according to their cluster;

predicted fold-switching regions

are black; single-folding regions

are gray. The PDBIDs, chains,

length TM-scores and RMSDs

are as follows:

(I) 4aanA/4aalA—341, 0.9/0.83,

0.5/5.2 Å (II) 5jyt_A/2qke_E—
106/108, 0.7/0.4, 7.6/9.3 Å, (III)

6z4uA/7kdtB—97, 0.66/0.2,

5.0/14.3 Å.
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Although previous work has shown that using shallow
MSAs and/or excluding templates can sometimes improve
the structural heterogeneity of AlphaFold2-generated
models,16 this was not the case for most fold-switching
proteins. Altogether, the new runs without templates
and/or with shallow MSAs were statistically similar to the
one performed with default parameters (Figure S4) and
predicted that only four additional proteins switch folds.
Thus, considering all four sets of simulations, AlphaFold2
captured fold switching in eight proteins (Table S4) and
missed it in the remaining 85 (91% of all fold switchers).

Examples of fold-switching proteins from all three
clusters are shown in Figure 1c. In Cluster 1, a short
region of MacA, a bacterial cytochrome c peroxidase,
switches folds during reductive activation.26 AlphaFold2
predicts that its fold-switching region assumes only the
oxidized conformation in its five best models. Although
all models in Cluster 1 had good TM scores (≥0.8) for
both conformations, they were more similar to Fold1
than Fold2. Good scores for Fold2 likely result from
shorter lengths of fold-switching regions compared to the
lengths of the remainder of the protein (Table S1a),
which had good overall predictions except for the rela-
tively short fold-switching regions. Indeed, TM-scores
comparing predicted and experimentally determined
fold-switching regions of proteins in Cluster 1 remained
biased toward Fold1 (Figure S5): only 10% of predictions
(15 out of 150) had better TM-scores for Fold2
(Section 2). Prediction qualities for 14 out of 15 of
Fold2-favored predictions were poor for both experimen-
tally determined folds (TM-score <0.6), demonstrating
AlphaFold2 did not capture either experimentally deter-
mined conformation well. Representing Cluster 2, KaiB
regulates the periodicity of the cyanobacterial circadian
clock through a fold switch27: its C-terminal subdomain
switches from a ground-state helix-strand-strand-helix
fold to an excited thioredoxin strand-helix–helix-strand
fold. AlphaFold2 predicts that this subdomain assumes
only the excited thioredoxin conformation in its top five
models. In Cluster 3, Orf9b, a protein encoded by the
Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2), assumes both a dimeric β-sheet form
and a monomeric α-helical form that binds the mitochon-
drial host protein, Tom7.28 In two out of five cases,
AlphaFold2 predicts a conformation similar to its β-sheet
fold (TM-scores of �0.66 for both models). The remaining
three models are partially helical but mostly unstructured
and do not correspond well to either experimentally
determined structure as evidenced by TM-scores ranging
from 0.17 to 0.23 (Table S1b). These three poor predic-
tions may result from Orf9b's shallow alignment of six
sequences, an inadequate number for generating robust
distance restraints.1,29 Furthermore, many amyloid-

forming proteins, such as alpha-synuclein, amylin, and
the αβ42 peptide, also fall into Cluster 3. This result cor-
roborates previous observations that AlphaFold2's
approach is not yet sensitive enough to robustly predict
the conformations of fibril-forming proteins.30,31

TM-scores can sometimes mislead, especially when
comparing mostly helical segments and/or highly dissim-
ilar structures or sequences. To assess the accuracy of this
metric, we used RMSD to compare AlphaFold2 models
with Fold1 and Fold2. The authors of AlphaFold2 also
combined TM-scores and RMSDs to assess the accuracy
of their models.1 As with TM-scores, AlphaFold2 predic-
tions tended to have better RMSDs from Fold1 than
Fold2 (Figure S2a). Specifically, predictions where RMSD
was ≤5 Å for at least one structure were better for Fold1
in 83% of cases. Additionally median/mean RMSDs were
significantly more accurate for Fold1 (2.9/5.7 Å) than
Fold2 (9.6/11.9 Å). TM-scores were plotted against
sequence identities (calculated on the alignment gener-
ated by TM-align) between the protein and the prediction
(Figure S2b). For ambiguous cases with sequence align-
ments and TM-scores <0.5, the RMSD values were also
large (mostly >10 Å), as seen in the bar plot inset. Hence,
structural deviations in these ambiguous cases are cor-
roborated by high RMSD values. Finally, TM-scores and
RMSDs of AlphaFold2 models vs. experimentally deter-
mined fold switchers were significantly correlated: Pear-
son R: �0.62, p < 3.3*10�98 (assuming normal
distribution, Figure S2c). Together, these results indicate
that AlphaFold2 preferentially predicts one fold-switch
conformation over another.

3.2 | AlphaFold2 predictions of “ground”
and “excited” state conformations

Only a few fold switchers have either been shown to pop-
ulate two folds simultaneously in solution or populate
two distinct crystal forms.10,32–34 Here, we found seven
(Table S5), all of which had only one conformation
predicted by AlphaFold2. More typically, fold-switching
proteins assume a more stable “ground” state and a less
stable “excited” state.27 Thus, we classified the remaining
86 protein pairs into “ground” and “excited-state” confor-
mations. We define ground state in two ways: first as iso-
lated protein when the other conformation binds a
ligand, second as a preferred conformation suggested by
the literature, such as the ground state tetrameric confor-
mation of KaiB,35 and third as one of two bound con-
formers (Table S5). This third definition gives
AlphaFold2 the benefit of the doubt when both structures
are ligand-bound. One might argue that if AlphaFold2
captures the ground state, its predictions could
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reasonably be considered correct. It does so in 76% of
cases, but not in the remaining 24%. For example, it pre-
dicts that KaiB assumes an “excited” thioredoxin fold27 in
all five cases. Combining all 93 fold-switch pairs,
AlphaFold2 captures the ground state conformation 70%
of the time, but misses it in the remaining 30%.

3.3 | AlphaFold2 prediction confidences
are significantly higher for fold-switching
sequences than for IDPs

As with fold-switching proteins, AlphaFold2 frequently
fails to capture the conformations of IDPs.6,7 These
poorly predicted conformations often have low confi-
dence scores,5 calculated using the pLDDT, which quan-
tifies the fraction of predicted Cα distances that lie within
their expected distance intervals.1 Higher pLDDT scores
indicate good agreement between prediction and expecta-
tion; pLDDT scores >90, 70, 50, 0 are considered very
high, high, low, and very low, respectively.

AlphaFold2's prediction confidences were compared for
fold-switching and single-folding regions within the fold-
switching proteins as well as 99 intrinsically disordered
regions selected from the DisProt Database (Reference
15, Section 2). AlphaFold2 was run on these 99 sequences15

(Section 2). The pLDDT scores of predicted IDPs were com-
pared with those of the fold-switching and single-folding
protein regions determined previously (Section 2). Figure 2
shows that IDPs have lower average pLDDT scores (55

± 24) than fold-switching (80 ± 20) and single-folding (87
± 16) sequences. Furthermore, 74%/87% of fold-switching/
single-folding residues had good pLDDT scores (≥70), com-
pared with only 30% for IDPs. Finally, the overall pLDDT
score distributions of all three sets of sequences were statis-
tically dissimilar (p � 0, Kolmogorov–Smirnov and Epps-
Singleton tests). Together, these results demonstrate that,
in contrast to IDPs, AlphaFold2 predictions of fold-
switching sequences have relatively high confidences,
though not quite as high as single-folding protein regions.

3.4 | Fold-switching sequences tend to
be more conserved than IDPs

AlphaFold2 does not capture the conformational hetero-
geneity of IDPs or fold switchers particularly well. While
its prediction confidences are generally low for IDPs, they
are higher for fold switchers. We investigated whether
the low prediction confidences of IDPs resulted from
their rapid rates of sequence evolution.36 This often con-
founds construction of statistically robust MSAs, neces-
sary inputs for generating accurate distance restraints for
protein structure prediction.29 Thus, stronger conserva-
tion of fold-switching sequences could be a possible
explanation for higher pLDDT scores.

We calculated the evolutionary rates of the sequences
from our set of 98 fold switchers and compared them
with 99 IDPs. Specifically, we ran Rate4Site21 on MSAs
generated and used by AlphaFold2 for predictions of
fold-switching proteins and IDPs (Section 2). Distribu-
tions of conservation scores, with lower numbers imply-
ing less conservation, are shown in Figure 3. Rates of

FIGURE 2 Distributions of AlphaFold2 predictions, measured

by per-residue local distance difference test (pLDDT) scores, differ

between fold-switching (blue), single-fold (gray), and intrinsically

disordered (red) protein sequences. Lower pLDDT scores indicate

lower prediction confidences. Thus, AlphaFold2 is generally less

confident in its predictions of IDPs than fold-switching or single-

folding proteins.

FIGURE 3 Evolutionary rates of IDPs, as indicated by

Rate4Site grades (1 = rapid evolution; 9 = high conservation) differ

between fold-switching (blue), single-fold (gray), and intrinsically

disordered (red) protein sequences. Sequences fold-switching and

single-fold proteins tend to be more conserved than IDP sequences.
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single-folding and fold-switching regions were narrowly
within the realm of statistical similarity p < .074 (Epps-
Singleton test, Section 2). By contrast, conservation scores
of IDP sequences were significantly lower than either
fold-switching or single-folding sequences as evidenced
by statistically dissimilar distributions with p < 1.1*10�46

and 4.4*10�111 (Epps-Singleton test, Section 2) for fold
switchers and single folders, respectively. These results
suggest that AlphaFold2 predictions of fold-switching
proteins may have higher confidences because their
sequences are more highly conserved than for IDPs.

3.5 | Higher prediction confidences
suggest that AlphaFold2 searches for one
“most probable” conformer

Frequencies of good AlphaFold2 prediction confidences
(pLDDT scores ≥70) increase with residue conservation
for fold-switching, single-folding, and disordered proteins
(Figure 4a). Thus, rapid evolutionary rates, specifically
conservation scores of 1–3, are associated with lower pre-
diction confidences. This is likely explained by rapidly
evolving sequences having shallower and/or poorly
aligned MSAs.1

Nevertheless, shallow MSAs do not fully explain
why AlphaFold2 prediction confidences are higher for
fold switchers than for IDPs. Good pLDDT scores level
off at around a conservation level of 4 for both fold
switchers and single folders, whereas pLDDT scores
continue to increase with conservation level for IDPs
(Figure 4a). Furthermore, for all conservation levels,
distributions of prediction confidences for disordered
residues were skewed systematically lower than
corresponding distributions of fold-switching and
single-folding residues (Figure 4b). Finally, prediction
confidences for fold switchers and MSA depth are
uncorrelated, as evidenced by a Pearson correlation
coefficient of 0.02 (Figure S6).

Based on these results, it is likely that AlphaFold2
searches for one “most probable” conformer, instead of
an ensemble of possible conformations. Supporting this
conclusion, AlphaFold2 used experimentally determined
structures of both folds when generating models in 28 of
93 runs, but it predicts fold switching in only three of
these cases (Table S6, Section 2). These results are consis-
tent with three additional observations:

1. AlphaFold2 was trained on the PDB, which contains
mostly single-fold proteins.9

FIGURE 4 The fraction of

AlphaFold2 predictions with

per-residue local distance

difference test (pLDDT) scores

≥70 increases as sequence
conservation increases (a).

Distributions of prediction

confidences (quantified by

pLDDT scores) are skewed

lower for disordered proteins

(red) than for single-fold (gray)

and fold-switching proteins

(blue). (b). Wider regions

correspond to more populated

prediction confidences. In both

cases, conservation score was

determined using Rate4Site;

higher scores correspond to

more conserved sequences.

Gray/white backgrounds group

protein regions with the same

conservation score.
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2. AlphaFold2 tends to settle on a protein's fold early in
the prediction process. Specifically, it predicts protein
structure using a pairwise representation of amino
acid distances in addition to MSAs. These distances
are typically determined early in the prediction pro-
cess and fluctuate minimally with increasing itera-
tions, even for difficult targets.1

3. Most structure prediction algorithms assume that pro-
teins assume one stable fold.

4 | DISCUSSION

AlphaFold2 is a major advance in protein structure
prediction,1 particularly for single-fold proteins.2 Never-
theless, it is based more on pattern recognition than bio-
physical principles.4 Specifically, its deep-learning model
is trained on protein sequences and experimentally deter-
mined protein structures, neither of which reveal folding
mechanisms. Without other fundamental information
about protein structure, such as thermodynamics (what
balance of forces favor the folded state?) and kinetics
(what pathways do proteins traverse between unfolded
and folded states?),4,37 deep learning approaches can only
reveal apparent properties of experimentally determined
protein structure.38 Thus, it is not surprising that its pre-
dictions often fail for proteins whose properties are not
fully apparent from solved protein structures, such as
IDPs.5–7

Although AlphaFold2 can sometimes be used to pre-
dict alternative quaternary structures,16,39 here we show
that it consistently fails to predict the conformational
diversity of proteins that assume multiple secondary struc-
ture configurations, known as fold switchers. Specifically,
AlphaFold2 failed to predict fold switching in its top five
models for 85 out of 93 proteins. Instead, it consistently
predicted that fold switchers assume one dominant fold,
even when it uses structures of both folds to make predic-
tions. Since proteins are typically assumed to have one
fold, this result is not surprising, especially because
AlphaFold2's training set, the Protein Data Bank, contains
relatively few fold-switching proteins.8,9 It is notable, how-
ever, that AlphaFold2's predictions miss the ground state
of fold switchers 30% of the time. This is further evidence
that its predictions are primarily rooted in sophisticated
pattern recognition, not protein biophysics.38

Unlike IDPs, prediction confidences for fold-
switching sequences are relatively high (74% have
pLDDT scores >70 compared with 30% for IDPs). This
result, combined with the weak relationship between
pLDDT distributions and conservation scores for fold-
switching proteins, suggests that AlphaFold2 assumes
that stably folded proteins have one dominant structure.

This assumption leads it to miss biologically relevant
structural information for some proteins, despite high-
confidence predictions. It also raises the question of how
much of the full picture is captured by AlphaFold2's full-
genome predictions,7 which were generated using simu-
lation parameters similar to those used here (full MSAs
with templates), though with shallower MSAs and eight-
times less conformational sampling. This set of parame-
ters captured fold switching in 4 of 93 proteins.

The dramatic structural rearrangements of fold-
switching proteins regulate biological processes40 and
are associated with numerous diseases, including
COVID-19,28 cancer,41 Alzheimer's,42 and malaria.33

Thus, predicting fold-switching proteins is an important
problem. While some progress has been made,12,43,44

much work remains to identify features unique to fold-
switching proteins. Furthermore, detailed biophysical
characterization of fold-switching proteins45,46 is
needed. These challenges present an opportunity to
improve predictive methods and possibly identify funda-
mental biophysical principles that are not yet well
understood. Such discoveries could help to advance the
field of protein structure prediction from sophisticated
pattern recognition to methods based fully on protein
biophysics.
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